Definitions of state variables and state space for brain - computer interface Part 1 . Multiple hierarchical levels of brain function
نویسنده
چکیده
Neocortical state variables are defined and evaluated at three levels: microscopic using multiple spike activity (MSA), mesoscopic using local field potentials (LFP) and electrocorticograms (ECoG), and macroscopic using electroencephalograms (EEG) and brain imaging. Transactions between levels occur in all areas of cortex, upwardly by integration (abstraction, generalization) and downwardly by differentiation (speciation). The levels are joined by circular causality: microscopic activity upwardly creates mesoscopic order parameters, which downwardly constrain the microscopic activity that creates them. Integration dominates in sensory cortices. Microscopic activity evoked by receptor input in sensation induces emergence of mesoscopic activity in perception, followed by integration of perceptual activity into macroscopic activity in concept formation. The reverse process dominates in motor cortices, where the macroscopic activity embodying the concepts supports predictions of future states as goals. These macroscopic states are conceived to order mesoscopic activity in patterns that constitute plans for actions to achieve the goals. These planning patterns are conceived to provide frames in which the microscopic activity evolves in trajectories that adapted to the immediate environmental conditions detected by new stimuli. This circular sequence forms the action-perception cycle. Its upward limb is understood through correlation of sensory cortical activity with behavior. Now brain-machine interfaces (BMI) offer a means to understand the downward sequence through correlation of behavior with motor cortical activity, beginning with macroscopic goal states and concluding with recording of microscopic MSA trajectories that operate neuroprostheses. Part 1 develops a hypothesis that describes qualitatively the neurodynamics that supports the actionperception cycle and derivative reflex arc. Part 2 describes episodic, “cinematographic” spatial pattern formation and predicts some properties of the macroscopic and mesoscopic frames by which the embedded trajectories of the microscopic activity of cortical sensorimotor neurons might be organized and controlled. State variables for BCI, Part 1 3 Walter J Freeman
منابع مشابه
EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملHierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملBrain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009